ACTIVITY 4: GRID PARITY

Activity Objective: Based on the data from activity 1, calculate the LCOE of your PV and CSP system and graph which one PV or CSP has the better chance of reaching grid parity.

Materials: Chapter 8, paper, computer, printer. Internet Access, MS EXCEL or other graph software, graph paper

Definition: Grid parity is an alternative energy source that can generate power at a LCOE (Levelized Cost of Electricity) that is less than or equal to the price of buying power from the local utility grid. LCOE is generally used when discussing renewable energy sources, like solar and wind power. Grid parity depends upon whether you calculate if from the view of a consumer or power utility. The LCOE of solar photovoltaics (PV) is ruled mostly by the panel costs and PV module costs, which are the main issues when tracking grid parity. Reaching grid parity is the point at which an energy source becomes a competitor for widespread development without government support.

The pricing of electricity from the grid is very complex. Most power sources are generated in industrial scale plants developed by public conglomerates. The utility providing the power and the utility delivering that power to the customers are often separate bodies who enter into an agreement that sets a fixed rate for all of the power delivered. On the other end of the power is an LDC (local distribution company) that charges rates that will cover their power purchases from the variety of producers they use.

The formula for LCOE is listed below:

$$LCOE = \frac{Sum \ of \ Costs \ over \ Lifetime}{Sum \ of \ Electrical \ Energy \ produced \ over \ Lifetime}$$

REVIEW VIDEOS:

Levelized cost of electricity (LCOE): Solar: LCOE https://www.youtube.com/watch?v=T9UH4lGEa6Y

Grid Parity Rating: https://www.youtube.com/watch?v=U3I0vLAn-gs
Grid integration https://www.youtube.com/watch?v=XtV574KBEbU

Procedure:

- 1. Work as partners or small teams.
- 2. Research and brainstorm grid parity and the calculations for LCOE.
- 3. Create a graph showing the LCOE results for both the PV and CSP systems in your model.
- 4. Develop a Power point presentation on your results.

4	3	2	1
World-Class	Proficient	Developing	Emergent
Learner	Learner	Learner	Learner
Learner at this	Learner at this	Learner at this	Learner at this
level has gone	level has had	level has been	level may or may
beyond mastery of	opportunities to	exposed to & had	not have been
knowledge, skills,	apply knowledge,	opportunity to	exposed to
& attitudes	skills, & attitudes	apply knowledge,	knowledge, skills,
described in	of component of	skills, & attitudes	& attitudes
project. World-	project. Proficient	of project.	required by
class learner	learner has	Developing	academic
consistently	mastered essential	learner may have	standards of the
exhibits high-	attributes, thus	only a few	project.
quality	proving mastery.	essential attributes	

to master before

mastery.

1= Emergent Learner

performance.

2 = Developing Learner

3 = Proficient Learner

4 = World-Class Learner